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Abstract —Heat transfer in a system where two phases are conjugated is discussed from a somewhat general
viewpoint using vectorial dimensional analysis which distinguishes the dimensions of length by phases as

well as by spatial directions.

As a result, the following conclusions are derived: (1) To grasp conjugate heat transfer in a unified way,
it is necessary to define new dimensionless groups which include conventional dimensionless groups
defined in both phases. (2) In unsteady conjugate heat transfer there exists a new dimensionless group

which represents an effect of the combination of physical properties of both phases.

NOMENCLATURE
a, thermal diffusivity;
b, coordinate normal to the paper;
B, physical properties parameter,

Arpres/Aspscs;

¢, specific heat;
F, dimensionless functional relation;
g, gravitational acceleration;
h, local heat-transfer coefficient;
h,,  mean heat-transfer coefficient;
H, fundamental dimension for heat:

I, 1,.1., characteristic length along x, y, z;

L. L, L, L, fundamental dimension for
X-, y-, z-, b-coordinate;

M, fundamental dimension for mass;

Nu,  Nusselt number, hx/A;;

Pe, Peclet number, uox/ay;

Pr,, Prandtl number, v /a;;

q, heat flux;

go, intensity of plane heat source;

t, temperature;

T, fundamental dimension for time;
u, velocity;

Uop, reference velocity;

X,y,z, coordinate.

Greek symbols

B, coefficient of thermal expansion;

0, temperature difference from some reference
temperature,;

o, fundamental dimension for temperature;

A, thermal conductivity;

i dynamic viscosity;

v, kinematic viscosity;

0, density;

7, time.
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Subscripts
£, fluid or phase f;
s, solid or phase s;
w, surface.

1. INTRODUCTION

WHEN one tries to arrange heat transfer in a system
where two phases are thermally conjugated (conjugate
heat transfer) in a dimensionless form, one is often
encountered with difficulties in choosing dimensionless
groups, because conventional dimensionless groups are
defined in a single phase. For example, a dimension-
less group for a local heat-transfer coefficient is the
Nusselt number from the fluid side, but the Biot number
should be considered instead from the solid side. Thus,
two conventional dimensionless groups exist for one
physical parameter. The situation is the same with
dimensionless groups for time, coordinate along the
boundary surface etc.

Previous research on conjugate heat transfer [1-6]
indicates that it is not sufficient to use conventional
dimensionless groups defined in a single phase, and it
is necessary to use newly defined dimensionless groups
which are composed of conventional dimensionless
groups and physical properties, characteristic lengths
of both phases, to arrange conjugate heat-transfer
problems in dimensionless forms. However these
studies are rather apt to confine themselves to their
specific problems and it seems that trials to see con-
jugate heat transfer in a unified way are few.

In this paper, conjugate heat transfer is studied from
the viewpoint that both phases are on an equal footing,
and discussions are made to seek a new way of defining
dimensionless groups which will enable us to see
conjugate heat transfer in a unified way, by vectorial
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dimensional analysis in which the dimensions of length
are distinguished not only by their spatial directions but
also by phases.

2. METHOD OF VECTORIAL DIMENSIONAL ANALYSIS
FOR CONJUGATE TRANSFER PHENOMENA

In this section, the method of vectorial dimensional
analysis in which dimensions of length are distinguished
by phases is described.

The method of ordinary vectorial dimensional
analysis [ 7] distinguishes the dimensions of length only
by their spatial directions. However, in conjugate
transfer phenomena, where fluxes go through the
boundary surface from one phase to the other phase of
different physical properties, one must further dis-
tinguish the axis of the coordinate normal to the
boundary surface by phases into two axes on the
occasion of vectorial dimensional analysis. In Fig. 1,
phase f and phase s are conjugated by the surface heat
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F1G. 1. Schematic representation of the conjugate transfer
problem.

flux g,. Then the x-coordinate is taken along the
boundary surface (the fundamental dimension of length
along this direction is taken to be L), the b-coordinate
normal to the paper (L), the y-coordinate normal to
the boundary surface in phase f(L,), and the :z-
coordinate normal to the boundary surface in phase
s(L,). Phase f and phase s possess in common the
x-coordinate and the b-coordinate at the boundary
surface, so x and b need not to be distinguished by
phases.

" In the following, an application example of the
method of vectorial dimensional analysis which dis-
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Laminar boundary layer
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F1G. 2. Application example of vectorial dimensional
analysis for conjugate transfer phenomena.

Phase f

tinguishes the dimensions of length by phases is
presented.

In Fig. 2, let phase f be a parallel flow with velocity
uo and phase s be a half-infinite flat plate with thick-
ness J,. At time t < 0, a laminar boundary layer flow
is formed on the flat plate from the leading edge of the
plate and the plate has a uniform temperature 8,
(temperatures are measured from the level of the bulk
temperature of the fluid). Then at time 1 = 0, the device
to keep the temperature of the plate constant is cut off
and the plate is left to be cooled by the flow. It is re-
quired to seek the transient characteristics of the surface
temperature of the plate 6,, = 0,,(z, x), the temperature
distribution in the fluid 8, = 8(z, x, y), the temperature
distribution in the solid 6; = 6,(z, x,z} and the local
heat-transfer coeflicient & = h(z, x).

Physical quantities concerning this two-dimensional
unsteady conjugate heat transfer and their dimensions
are listed in Table 1. The predominant directions of
the heat fluxes are estimated to be parallel to y in the
fluid, and z in the solid. Moreover, a product of the
density and the specific heat is treated as one physical
quantity in the solid.

The dimensionless functional relation for the surface
temperature is derived as follows, by treating 0, 7, x,
As and p; as independent physical quantities:

0

G-W = F(Ts, Xys, B, Pry) (1)
0
where K ispres

7 Plpyes)?

_ Xhgpscr
P uopscy)? @
B— ArPygCy
/JVSpscs

and Pr; is the Prandtl number of the fluid.

Table 1. Dimensions of physical quantities

h 0, 0, 0, < x y z
L, -1 0 0 0 ©0 1 0 0
L, o0 0 0 0 o 1 0
L. o 0 o O o0 0 0 1
M/L, o 0 0 0 0 0 0 O
H/L, 1 6 0 0 0 o0 0 o0
(2] -1 1 1 1 o 0 0 o
T -1 0 0 0 1 0O 0 o

|
|
|
|
|

D
=)

/J.S Hy ).f Pr Cr PsCs I Ug

|

-1 -1 -1 -1 0 -1 0 1 0
0 1 1 ~1 0 0 0 0 o
1 0 0 0 0 -1 1 0 0
0 1 0 1 -1 0 0 0 0
1 0 1 0 1 I 0 0 0

~1 0 -1 0 -1 -1 0 0 1

1 —1 o 0 0 0 ~-1 0O
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The dimensionless functional relations for the
temperature distributions in the fluid and in the solid
are obtained by treating 8, or 8, 7, x, y or z, 4, and
u; as independent physical quantities:

8 ypses
—=F Ts’ X sy 7 B; P 3
B ( 7o Xps T2 183 (3)

05
== F(Tfs, X5 =, B. Pr,). @)
(o]

L

The dimensionless functional relation for the local
heat-transfer coefficient is also obtained by treating h,
1, X, As and g as independent physical quantities:

Hfs = F(Tfs, st, B, Prf) (5)
where
o= s ®
1PrCs
As to the derivation procedure of the above relations,
see Appendix.

For comparison, the result obtained by ordinary
dimensional analysis (in which directions and phases
are not distinguished} and that by ordinary vectorial
dimensional analysis (in which phases are not dis-
tinguisheu) for the local heat-transfer coefficient are
stated:

UpT X HoX Ap py cf

Nu = F(—~, s
X l‘z Vy

LREm) o

in ordinary dimensional analysis, and

Nu upT agyx Ay py ¢
Pt ( =, =, =, Pry (8)

x w2’ A ps e
in ordinary vectorial dimensional analysis.
On the other hand, equation (5} can be rewritten
using relations

Nu
Hp)' (Xpoft = —
(f) (.f) Pe,}

(Tpt - (Xp) ™t = 228
X

N agx
Xy (B = 2
uoiz
into
Nu UpT X
})}= (—x—, ;;—E, B, Prf). 9

Comparing equation (9) with equations (7) and (8), it is
clear that the vectorial dimensional analysis method
which distinguishes phases gives dimensionless func-
tional relations more compact than ordinary methods
do.

3. DIMENSIONLESS GROUPS FOR CONJUGATE
HEAT TRANSFER
Dimensionless groups obtained by applying the
method described in the preceding section to some
conjugate heat transfer problems are tabulated in Table
2 along with corresponding conventional dimension-
less groups. As clearly seen from the table, dimension-
less groups induced by vectorial dimensional analysis

for conjugate transfer phenomena are defined using
characteristic lengths and physical properties of both
phases {in the following, these will be called ‘conjugate
dimensionless groups’), whereas conventional dimen-
sionless groups are defined using characteristic lengths
and physical properties of only one phase. In Table 2,
only common representative conjugate dimensionless
groups are shown. Authors do not assert that all the
conjugate dimensionless groups should be used
instead of conventional dimensionless groups to
arrange any specific conjugate problem. Authors can
say that these conjugate dimensionless groups enable
us to grasp conjugate problems general in a unified way
as will be shown in the next section, and in some
problems it is indispensable to use conjugate dimen-
sionless groups to arrange the results completely.

1t must be also noted that a parameter defined by
AppscsfAspscs appears in unsteady conjugate problems
due to the existence of heat conduction in phase s as
well as in phase f. This parameter, which will be called
‘physical properties parameter’, represents the effect of
the combination of physical properties of both phases
(fluid-solid, solid-solid) on unsteady conjugate heat
transfer, and will be discussed in the next section.

4. INTERPRETATIONS OF PREVIOUSLY STUDIED
CONJUGATE HEAT-TRANSFER PROBLEMS

In this section, trials are made to interpret dimen-
sionless groups variously defined in previous researches
on conjugate heat transfer in a unified way using new
dimensionless groups tabulated in Table 2.

At this stage it must be convenient to point out that
there exists a definite relation between the forms of
conjugate dimensionless groups and those of con-
ventional dimensionless groups, It is easy to check the
relation.

(conjugate dimensionless group) = (conventional

. . . . XprCy "
dimensionless group defined in the fluid)- ;
2P5Cs

or
(conjugate dimensionless group) = (conventional

dimensionless group defined in the solid)- (%)
SHsvs

where m and n are appropriate indices and when the
characteristic length [, exists, x in xp ¢/l p.c; may be
replaced by I.. For convenience, xpscs/lpscs and
Agpregfispscs will be called “bridging multiplier’. In the
following discussions this bridging multiplier makes it
easier to rewrite dimensionless groups.

Unsteady problems are discussed to begin with.

First, a classical contact problem as shown in Fig. 3
[8] is taken up. A solid (phase f) with uniform tem-
perature tso and a solid (phase s5) with uniform tem-
perature t,o are suddenly put into contact at time 1 = 0.
Transient characteristics of temperature distributions
in both phases ¢, t; and the boundary surface tem-
perature ¢, are to be studied.

Variables to specify the situation are 1, y, 2z,
Bo{=1ts0—1ro} s, PrCys, As, PsCs and unknown variables
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Table 2. Dimensionless groups

Physical Defined in  Defined in
parameter Conjugate the fluid the solid Remarks
hi,pgcs hx hi.
h H = zPsCs -
Aeprey Ag /s
Thgpsiy ast ast
' TP e 77
lz (Ps('s) X I:
,‘C;Lf/)f('[ as as X .
x = — - - forced convection
f uﬂ’?(ps('s)z UgX uol?
ot = gﬂfm?(pscs)‘t t yﬁf0X3 + -
T xhgpreP aj .
6 ot natural convection
1 X
O = O, T L .
Pry Vi
o3, = 9o Blpses)®* t gBrqox* ¥ -
BT xGypses? Apdj .
qo | P - natural convection
9P rdoX
Q=453 08T —— —
ry ArVy
0 _ sy o - forced convection with
Or 4o T golipses plane heat source
inati Arose
combination B= me(-f» — unsteady problem
effect AsPsCs
+ When characteristic length [, exists, x may be replaced by /..
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F1G. 3. One-dimensional contact problem.

are Gw(=lw‘-‘tf0), 9[(=lf‘lfo) and 05(2‘[5—’[/0). Then

the following dimensionless functional relations

obtained applying the method described in Section 2:

0w

o=F®

O ¥y
6" (J(am’ B>
6 z

0o F(\/(asr)’ B)'

Analytical solutions for this problem are given as

e

F1G. 4. Luikov—PereI'man problem.

(rearranging in terms of the physical properties par-

are ameter B)
bw_ 1 (13)
10) 6o 14+/B
O_ 1. fc<_L> (14)
9 1+vB " \2Jlas0)
un 0 1 z
(12)

These solutions are substantially equal to the results,

equations (10)-(12).

Next the unsteady problem studied by Luikov and
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Perel'man [9] is taken up. As shown in Fig. 4, at one
wall of a two-dimensional channel (width /, and initial
temperature to) through which flows a completely
developed flow with temperature ¢, is placed a solid
body of dimensions I, I, whose entire surface except
the surface contacting with the fluid is thermally insu-
lated. Luikov and Perel’man treated this problem (the
transient characteristics of the mean surface tempera-
ture and the mean heat-transfer coefficient for length
I,) introducing an effective value of velocity uo which
considers not only the velocity boundary layer but
also the thermal boundary layer of the flow. Defining
the dimensionless groups

K=BY A= (“"E)*, g=28

aSlX lx

they obtained the following dimensionless functional
relation for the mean heat-transfer coefficient:

Al
The vectorial dimensional analysis method for con-
jugate transfer phenomena gives the following dimen-

sionless functional relation for the mean heat-transfer
coefficient:

(16)

= F(K, A, &) (17)

Hfsm = F(Tfse Ba stl) (18)
where
_ hmlzpscs _ lx;l,fprf
T rer T woBlpscF
Equation (18) can be rewritten into
L
ke _ F(K, A, Q) (19)

s
and this is equal to the result given by Luikov and
Perel'man.

Next the unsteady problem studied by Adams and
Gebhert [10] is taken up. As shown in Fig. 5, a two-
dimensional plate of dimensions /, - I;, on which surface
there is a plane heat source with intensity gy, is placed
in a two-dimensional uniform flow with velocity u,
and temperature .. Adams and Gebhart showed that
the transient surface temperature 6,(= t, —1t5), after
putting the plane heat source into run step-wise at
time 7 = O, falls between the two solutions which are
obtained by solving the solid side energy equation
(including only heat capacity of the solid) under the
assumption that the surface temperature is constant in
one case, with the other the surface heat flux being kept

R
UO

e

et y

- t
o X q, (Plane heat source)

{
l X

FiG. 5. Adams—Gebhart problem.

constant. They gave the following expression:

0w !
ST -
where
o= uor, Q - lzpscsu()gwoo
lx [qu

By vectorial dimensional analysis for conjugate
transfer phenomena, the following dimensionless func-
tional relation for the surface temperature is obtained:

0
Rysw = 22P1 _ B(T,, X,4, B, Pry).

golzpsCs
When the parameter B is nearly zero as Adams and
Gebhart treated, and the final surface temperature 6,
depends on g, the Lhs. of equation (21) stands for
04/0ws, then equation (21) can be rewritten using
dimensionless groups defined by Adams and Gebhart:

O ol
m=F ~Q—,st,Prf .

Thus, equation (22) is substantially equal to the result
given by Adams and Gebhart.

T

21)

(22)

qO
/m:ne heat source)

S i?

F1G. 6. Gebhart problem.

Next the unsteady problem studied by Gebhart
[1-5]is taken up. As shown in Fig. 6, a two-dimensional
plate of dimensions /.- I, on which surface is a plane
heat source of intensity go, is placed vertically in fluid
of temperature ... Gebhart treated this problem con-
cerning the transient characteristics of the mean surface
temperature ,(1) after the heat source is put into run
at time 7 = 0 and obtained the following result:

O

0_—— = F(TG, QG, Prf) (23)
where

S

Ty = (a—IQ—T—)-(b-GG-Pr,)M

Lpscs
Go= <lxprfM

I
Ge = gBs 2qo
ifvf

)-(b- Ge: Prp)'/® r (24)

and b, M are both functions of Pr, only.
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Applying vectorial dimensional analysis for con-
jugate transfer phenomena the following dimensionless
functional relation is obtained for the mean surface
temperature:

Rfsw — _OYW'}‘fprf

do lzpscs

The arrangement of this problem by Gebhart is in itself
excellent and the definitions of the dimensionless time
Ts and the dimensionless heat capacity of the plate Qg
mean that the dimensionless intensity of the plane heat
source serves as if it were the bridging multiplier. When
one stands on the point of view that characteristic
lengths and physical properties are additionally used to
construct conjugate dimensionless groups, one is to
select the dimensionless time and the dimensionless
intensity of the plane heat source as the physical
parameters. Actually, the following relations between
the definitions by Gebhart and the conjugate dimen-
sionless groups show that equations (23) and (25) are
substantially equal:
_ a,r_(lxpfcf

2
5= plat el ~ (T 1, -2
5= lzpscs) (Ts)" - (Qq)

= F(Tsz Qfs’ B, Prf) (25)

5
0% = PV}'GG(*L'DSCS) ~ (Qq)*.
Lpres

From above discussions on unsteady problems, it is
easily seen that the effect of the combination of physical
properties of both phases is represented only by the
physical properties parameter B, and this is originated
from taking account of heat conduction in the solid.
However, B may not have so great an effect on the
problems with heat sources as on those without. The
problem studied by Gebhart is considered to be this
case.

However, in conjugate problems between a moving
fluid (phase f) and a moving fluid (phase s) the para-
meter B will not appear, and there will appear two
parameters A,p ;/A;ps and cg/cs instead of B, because in
the moving fluid the density and the specific heat work
independently.

Now steady problems are discussed in the followings.
In steady problems the heat capacity in a unit volume
of the solid phase p,c, does not have any effect on the
phenomena. Therefore, in steady problems, the physical
properties parameter Bdoes not appear and dimension-
less groups take irregular forms, different from those
tabulated in Table 2.

First as a steady problem, the one studied by Lock
and Gunn (6] is taken up. As shown in Fig. 7, a two-
dimensional slender fin of root width 2-/, and length
I, is placed downward in a fluid with temperature t,.
Lock and Gunn treated this problem concerning the
steady state temperature distribution at the fin surface
when the fin root temperature is maintained at a
constant temperature (x(0g = tr—to) under the condi-
tions that the fin slenderness ratio /./l; is sufficiently
large and that the half width of the fin d(x) at an
arbitrary position x is given by

7(5_ x\"
Lo\,

(26)
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FiG. 7. Lock—Gunn problem.

They concluded that the surface temperature expressed
(or approximated) by the form

O <x> 21
6 \L, ‘
is determined by the parameter
Al 013 1t
ek ] 9Bs0 (28)
/lez af(1+Prf)

only.

In this problem, the predominant direction of the
heat flux in the fluid g, is y-direction and the pre-
dominant direction of the heat flux in the solid g; is
supposed to be x-direction, then the vectorial dimen-
sional analysis method for conjugate transfer phenom-
ena gives the following dimensionless functional
relation for the surface temperature:

Hw X )uflx 4 gﬂfOng
— = F{—, : , Prep.
Or {zx <).sl:> a

This result is substantially equal to the result given by
Lock and Gunn. If this problem is regarded to be an
unsteady one, the dimensionless functional relation for
the surface temperature is given by

BW—F T x
0\ "L Bipse,

In this relation, note that the physical properties par-
ameter B does not appear in spite of the unsteady prob-
lem, since the predominant direction of ¢; is parallel to
the x-coordinate. When one treats this problem as a
steady one, two parameters will disappear, one being
Tys, and the other the third dimensionless group on the
right-hand side of equation (30). By this time, the fourth
dimensionless group which includes p,c;, takes the form

©%) <’31f!’f64>4 _ (&fl{)‘.gﬁfﬁli

BApscs Al at

(29)

2
_,f_’_)f_cf’ o, Prf>. (30)

(31)

and this may be regarded as an irregular form of ®@%.

Next the steady problem studied by Zinnes [1] is
taken up. As shown in Fig. 8, a two-dimensional solid
ofdimensions l,.- [, whose entire surface, but for the part
of which contacting with a fluid of temperature t,,, is
thermally insulated, is placed on a two-dimensional
vertical wall. On the upper and lower parts of the
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q

o

(Plane heat source)

F1G. 8. Zinnes problem.

surface of the solid contacting with the fluid are placed
plane heat sources of intensity go. Zinnes treated this
problem concerning steady state natural convection
heat transfer after heat sources being put into run, and
obtained following relations for the surface temperature
and the temperature distribution in the fluid:

wi A
ﬁfg— = F<X, G., 2, Pr,> 32)
Vf )-s
3 A
M:F(X, Y, 6., 2, Pr,> (33)
Vf 2's
where
[
x=% y=2. g = 8ol (34)
Ix Ix A.fo

In this problem, the predominant direction of g; is
y-direction, on the other hand that of g, is expected to
be much more complicated according to the running
way of plane heat sources and/or the region considered,
so two cases, the case g¢,//z and the case g//x, are
taken account of. Then the following results are ob-
tained for the surface temperature by vectorial dimen-
sional analysis for conjugate transfer phenomena:

(@)‘,gﬂwwzﬁ

Asly a}

x (AN gBsaols
‘{z,; (w) Gt T O

for the case g,//z, and

(Afzx>4,gﬁfewzz

Asl: az

5 4 A
_ F{f (@) .yﬂfqolx, Pr,} (36)

L\AL) A

for the case q,//x.

Comparison of equations (35) or (36) with equation
(32) given by Zinnes indicates that they are substantially
equal and furthermore that the result by Zinnes be-
comes more compact expression by using dimension-
less groups which appear in equations (35) or (36). This
means that the parameter A;/A, does not work in-
dependently. If this problem is regarded as an unsteady
one, the dimensionless functional relation for the sur-
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face temperature is given by (for simplicity only the
case g,//z is considered)

0%, = F(Tfs, 15 0%.. B, Pr,>. 37)

X
Therefore, in the steady problem, Ty, and B will dis-
appear, the latter affecting the forms of other dimen-
sionless groups containing the term p,c;, as follows

AN gB0.8

gt = [2tz)  9PsOwls
(©%)'-(B) < Asl) p (38)

AN gBrgol?

1.y — |20l 9Pr90i
Q%) - (B) < /u) L (39)

Thus, equation (38) may be regarded as another ir-
regular form of ®@%; and equation (39) as an irregular
form of Q%;.

5. CONCLUDING REMARKS

By introducing the method of vectorial dimensional
analysis which distinguishes the dimensions of length
by phases, a perspective view of conjugate heat transfer
can be obtained. That is to say, to treat conjugate heat-
transfer problems in a unified way it is necessary to use
conjugate dimensionless groups, and in unsteady con-
jugate heat-transfer problems between a fluid (or solid)
and a solid there exists the physical properties para-
meter B which expresses the effect of the combination
of physical properties of the fluid (or solid) and of the
solid on heat transfer.
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APPENDIX
The derivation procedure of equation (3), which is picked
up as a representative from among equations (1), (3), (4) and

(5), is described in this Appendix.

Physical quantities which affect the temperature distri-
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bution in the fluid 8 are 1, x, y, . Ay pg. Cpy Agy psts, L.
uo and 0. First, the predominant directions of the heat flux
in phase f(g,) and of that in phase s(g;) in the problem must
be estimated. Then the dimensions of ., and 4, can be
determined by Fourier’s law of heat conduction. In this
example, g, and g, are estimated to be parallel to y and z
respectively, so [i,] = [q,1/[00,/0y]= HL,/L,L,®T and
[4s] = [4s)/[06s/¢z] = HL./LL,®T. After the determina-
tion of dimensions of all physical quantities concerned
(see Table 1), independent physical quantities must be
appropriately chosen. Since independent fundamental di-
mensions for this example are Ly, L,, L.. M/L,. H/L,, ©
and T, six physical quantities (0, 1, X, ¥, A, uy) are chosen

as independent. Then Buckingham's Pi theorem gives the
following functional relation:

ny = F(ny, 73, m4, 75, 7e)

where
o 0y oo tdepycy XArpyey
1=, 2= y M3 =03,
00 lf(PsCs)z llolg(pxcs)z
YPsey AsPsCs BrCy
Mg ="""—", [As=——""", TMg=—""".
l:psCS LrPrCr Ly

For convenience, the form A,p ¢ /Aspscs is used instead of
s in this paper.

ETUDE PAR L’ANALYSE DIMENSIONNELLE VECTORIELLE
DU TRANSFERT DE CHALEUR CONJUGUE

Résumé— Le transfert de chaleur dans un systéme comprenant deux phases est étudié du point de vue
assez général de l'analyse dimensionnelle vectorielle, en distinguant les dimensions de longueur suivant
les phases aussi bien que suivant les directions spatiales.

Comme résultat, on a tiré les conclusions suivantes: (1) Afin de saisir le phénoméne du transfert de
chaleur conjugué dans un mélange de phases, de maniére unifiée, il est nécessaire de définir de nouveaux
groupements adimensionnels qui comprennent en outre les groupements adimensionnels habituels définis
dans chacune des phases; (2) Dans le cas du transfert de chaleur instationnaire, il existe un nouveau

groupement adimensionnel qui représente I'effet combiné des propriétés physiques de chaque phase.

UNTERSUCHUNG DES ZUSAMMENGESETZTEN WARMEUBERGANGS DURCH
VEKTORIELLE DIMENSIONSANALYSE

Zusammenfassung— Der Wirmeiibergang in einem System mit zwei zusammengesetzten Phasen wird von
einem allgemeineren Gesichtspunkt aus untersucht mit Hilfe der vektoriellen Dimensionsanalyse, wobei
nach Dimensionen der Linge wie auch des Raumes unterschieden wird.

Das Ergebnis sind folgende SchluBfolgerungen: (1) Um den zusammengesetzten Wérmeiibergang in
einheitlicher Weise zu erfassen ist es notwendig, neue dimensionslose Gruppen zu definieren, die
konventionelle dimensionslose Gruppen fiir beide Phasen umfassen; (2) Bei instationdrem zusammen-
gesetztem Wirmelibergang ergibt sich eine neue dimensionslose Gruppe, die den Einflul der Kombination

der physikalischen Stoffwerte beider Phasen wiedergibt.

WUCCIJIEJOBAHUE COINPSIXEHHOI'O TIPOLIECCA TNEPEHOCA TEIJIA
C IOMOUBKO BEKTOPHOI'O AHAJIU3A PASMEPHOCTEHN

Amnoraunsa — O6CyX)JaeTca TepeHoC Tenna B CHCTEME M3 ABYX CONPSXKEHHBIX (a3 C HECKOJIBKO
obuieil TOYKH 3PEHHS C TTOMOLUBIO BEKTOPHOTO aHa/M3a pa3sMEPHOCTEll, B KOTOPOM YUHTHIBAKOTCSH
pa3nuyuble MacliTabbl QIMHBL KaK N0 ¢a3aM, Tak U N0 HANPaBICHUSAM B MIPOCTPAHCTBE.

B pesynbTaTe coenansl crneaylomme BoiBOAbL: (1) AN yHHPUUHMPOBAHHOTO ONMHCAHMA NNOuUECca
MepeHoca Ter1a HeOOXOAHMO ONMPEAENUTh HOBbie He3pa3MEPHbIE KOMIUIEKCh, KOTOPLIE BKIMOYAIOT
o6biuHbIe Ge3pa3mMepHbie KOMILIEKChI, onpeaensieMble B obenx ¢azax; (2) npu HecTauHOHAPHOM
CONpsXKEHHOM TIEpeHOCe TEIUIa CyLLUECTBYET HOBbIH Be3pa3MepHbIli KOMIIEKC, KOTOPbIH XapakTepy-

3yeT BAMAHUE COYeTaHUs DU3MUECKUX XapaKTepucTuk obenx tas.



