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Abstract-Heat transfer in a system where two phases are conjugated is discussed from a somewhat general 
viewpoint using vectorial dimensional analysis which distinguishes the dimensions of length by phases as 
well as by spatial directions. 

As a result, the following conclusions are derived: (1) To grasp conjugate heat transfer in a unified way, 
it is necessary to define new dimensionless groups which include conventional dimensionless groups 
defined in both phases. (2) In unsteady conjugate heat transfer there exists a new dimensionless group 

which represents an effect of the combination of physical properties of both phases. 

NOMENCLATURE Subscripts 

4 thermal diffusivity; 

b, coordinate normal to the paper; 

B, physical properties parameter. 

~~P$csI&Psc,; 

c, specific heat; 

F, dimensionless functional relation; 

99 gravitational acceleration; 

h, local heat-transfer coefficient; 
h 

Hm 
mean heat-transfer coefficient; 
fundamental dimension for heat; 

1,, I,, 1,, characteristic length along x, y, z; 

LX,L,,LZ,Lb, fundamental dimension for 

x-, y-, z-, b-coordinate; 

M, fundamental dimension for mass; 

Nu, Nusselt number, hx/lf ; 
Pe, Peclet number, uox/u,; 

Prf, Prandtl number, v//a/; 

4, heat flux; 

40, intensity of plane heat source; 

4 temperature; 

T, fundamental dimension for time; 

% velocity; 

UO. reference velocity; 

x, y, 2, coordinate. 

Greek symbols 

B? coefficient of thermal expansion; 

0, temperature difference from some reference 
temperature; 

0 

1.’ 

fundamental dimension for temperature; 
thermal conductivity; 

b dynamic viscosity; 

V, kinematic viscosity; 

P, density; 

z, time. 

fluid or phase f; 
solid or phase s; 
surface. 

WHEN one tries to arrange heat transfer in a system 
where two phases are thermally conjugated (conjugate 
heat transfer) in a dimensionless form, one is often 
encountered with difficulties in choosing dimensionless 
groups, because conventional dimensionless groups are 

defined in a single phase. For example, a dimension- 

less group for a local heat-transfer coefficient is the 
Nusselt number from the fluid side, but the Biot number 

should be considered instead from the solid side. Thus, 
two conventional dimensionless groups exist for one 
physical parameter. The situation is the same with 
dimensionless groups for time, coordinate along the 

boundary surface etc. 
Previous research on conjugate heat transfer [l-6] 

indicates that it is not sufficient to use conventional 
dimensionless groups defined in a single phase, and it 
is necessary to use newly defined dimensionless groups 
which are composed of conventional dimensionless 
groups and physical properties, characteristic lengths 
of both phases, to arrange conjugate heat-transfer 
problems in dimensionless forms. However these 
studies are rather apt to confine themselves to their 
specific problems and it seems that trials to see con- 
jugate heat transfer in a unified way are few. 

In this paper, conjugate heat transfer is studied from 
the viewpoint that both phases are on an equal footing, 
and discussions are made to seek a new way of defining 
dimensionless groups which will enable us to see 
conjugate heat transfer in a unified way, by vectorial 

I. INTRODUCTION 
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dimensional analysis in which the dimensions of length 
are distinguished not only by their spatial directions but 
also by phases. 

2. METHOD OF VECTORJAL DIMENSIONAL ANALYSIS 
FOR CONJUGATE TRANSFER PHENOMENA 

In this section, the method of vectorial dimensional 
analysis in which dimensions of length are distinguished 

by phases is described. 
The method of ordinary vectorial dimensional 

analysis [7] distinguishes the dimensions of length only 

by their spatial directions. However, in conjugate 
transfer phenomena, where fluxes go through the 
boundary surface from one phase to the other phase of 

different physical properties, one must further dis- 
tinguish the axis of the coordinate normal to the 

boundary surface by phases into two axes on the 
occasion of vectorial dimensional analysis. In Fig. 1, 

phase f and phase s are conjugated by the surface heat 

Y 

; ‘. 

Phase f 

Pf A, Pr Cf 

4 (Surface heat flux) 

I 

FIG. 1. Schematic representation of the conjugate transfer 
problem. 

flux q,,,. Then the x-coordinate is taken along the 
boundary surface (the fundamental dimension of length 
along this direction is taken to be L,), the b-coordinate 
normal to the paper (Lb), the y-coordinate normal to 

the boundary surface in phase f(L,), and the z- 
coordinate normal to the boundary surface in phase 
s(L,). Phase J” and phase s possess in common the 
x-coordinate and the b-coordinate at the boundary 
surface, so x and b need not to be distinguished by 

phases. 
In the following, an application example of the 

method of vectorial dimensional analysis which dis- 

x 

FIG. 2. Application example of vectorial dimensional 
analysis for conjugate transfer phenomena. 

tinguishes the dimensions of length by phases is 

presented. 

In Fig. 2, let phase f be a parallel flow with velocity 
u0 and phase s be a half-infinite flat plate with thick- 
ness I,. At time t < 0, a laminar boundary layer flow 

is formed on the flat plate from the leading edge of the 
plate and the plate has a uniform temperature B0 

(temperatures are measured from the level of the bulk 
temperature of the fluid). Then at time r = 0, the device 
to keep the temperature of the plate constant is cut off 

and the plate is left to be cooled by the flow. It is re- 
quired to seek the transient characteristics of the surface 
temperature of the plate &, = &(t, x), the temperature 
distribution in the fluid Bf = Qr(7, x, y), the temperature 
distribution in the solid BS = f?,(r,x,z) and the local 
heat-transfer coefficient h = h(7, x). 

Physical quantities concerning this two-dimensional 

unsteady conjugate heat transfer and their dimensions 
are listed in Table 1. The predominant directions of 
the heat fluxes are estimated to be parallel to y in the 

fluid, and z in the solid. Moreover, a product of the 
density and the specific heat is treated as one physical 

quantity in the solid. 

The dimensionless functional relation for the surface 
temperature is derived as follows, by treating 0,. 7, X, 

& and PL/ as independent physical quantities : 

I), 
- = wfs, x,,, B, Prf) 
HO 

and Prf is the Prandtl number of the fluid. 

(2) 

Table 1. Dimensions of physical quantities 
___ 

LX -10 0 0 0 1 0 0 -1 -1 -1 -1 O-IO 10 
4 00000010 01 l-1 0 00 00 
L 00000001 1000 o-1 1 00 
M/Lb 0 0 0 0 0 0 0 0 0 1 0 1-l 00 00 
H/Lb 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 
0 -1 1 1 1 0 0 0 0 -1 0 -1 0 -1 -1 0 0 1 
T -10 0 0 1 0 0 0 -1 -1 -1 0 0 0 0 -1 0 

I- 
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The dimensionless functional relations for the 
temperature distributions in the fluid and in the solid 
are obtained by treating 0f or f?,, r, x, y or z, & and 
,nI as independent physical quantities : 

(3) 

(4) 

The dimensionIess functional relation for the local 
heat-transfer coefficient is also obtained by treating h, 
z, x, I, and p1 as independent physical quantities: 

HrS = F(& XJ,, B, Prl) (5) 
where 

*~+E. (6) 
GJre, 

As to the derivation procedure of the above relations, 
see Appendix. 

For comparison, the result obtained by ordinary 
dimensional analysis (in which directions and phases 
are not distinguished) and that by ordinary vectorial 
dimensional analysis (in which phases are not dis- 
tinguishec) for the local heat-transfer coefficient are 
stated : 

in ordinary dimensional analysis, and 

(8) 

in ordinary vectorial dimensional analysis. 
On the other hand, equation (5) can be rewritten 

using relations 

(r,)‘~WfJ = Q- 

(X,,)” . (q-1 = 5 
I 

into 

$=F ( z, 5, B, Prf > . (9) 
x i 

Comparing equation (9) with equations (7) and (8), it is 
clear that the vectorial dimensional analysis method 
which distinguishes phases gives dimensionless func- 
tional relations more compact than ordinary methods 
do. 

3. DIME~SIONLE~ GROUPS FOR CONJUGATE 
HEAT TRANSFER 

Dimensionless groups obtained by applying the 
method described in the preceding section to some 
conjugate heat transfer problems are tabulated in Table 
2 along with corresponding conventional dimension- 
less groups. As clearly seen from the table, dimension- 
less groups induced by vectorial dimensional analysis 

for conjugate transfer phenomena are defined using 
characteristic lengths and physical properties of both 
phases (in the following, these will be called ‘conjugate 
dimensionless groups’), whereas conventional dimen- 
sionless groups are defined using characteristic lengths 
and physical properties of only one phase. In Table 2, 
only common representative conjugate dimensionless 
groups are shown. Authors do not assert that all the 
conjugate dimensionless groups should be used 
instead of conventional dimensionless groups to 
arrange any specific conjugate problem. Authors can 
say that these conjugate dimensionless groups enable 
us to grasp conjugate problems general in a unified way 
as will be shown in the next section, and in some 
problems it is indispensable to use conjugate dimen- 
sionless groups to arrange the results completely. 

It must be also noted that a parameter defined by 
IfpJcf/&pscs appears in unsteady conjugate problems 
due to the existence of heat conduction in phase s as 
well as in phase f. This parameter, which will be called 
‘physical properties parameter’, represents the effect of 
the combination of physical properties of both phases 
(fluid~olid, soIid-solid) on unsteady conjugate heat 
transfer, and will be discussed in the next section. 

4. INTERPRETATIONS OF PREVIOUSLY STUDIED 
CONJUGATE HEAT-TRANSFER PROBLEMS 

In this section, trials are made to interpret dimen- 
sionless groups variously defined in previous researches 
on conjugate heat transfer in a unified way using new 
dimensionless groups tabulated in Table 2. 

At this stage it must be convenient to point out that 
there exists a definite relation between the forms of 
conjugate dimensionless groups and those of con- 
ventional dimensionl~s groups. It is easy to check the 
relation. 

(conjugate dimensionless group) = (conventional 

dimensionless group defined in the fluid). F 
( 1 

m 

zss 
or 

(conjugate dimensionless group) = (conventional 

A/P/C/ n dimensionless group defined in the solid). ___ 
( 1 &P&s 

where M and n are appropriate indices and when the 
characteristic length I, exists, x in xp~c~/~~~~c~ may be 
replaced by I,. For convenience, xp,c~Jl~~~c* and 
Afp,cJ&psc, will be called ‘bridging multiplier’. In the 
following discussions this bridging multiplier makes it 
easier to rewrite dimensionless groups. 

Unsteady problems are discussed to begin with. 
First, a classical contact problem as shown in Fig. 3 

[8] is taken up. A solid (phasef) with uniform tem- 
perature ffo and a solid (phase s) with uniform tem- 
perature t,o are suddenly put into contact at time 7 = 0. 
Transient characteristics of temperature distributions 
in both phases tf, t, and the boundary surface tem- 
perature t, are to be studied. 

Variables to specify the situation are 7, y, z, 

~o(=t~o-t~o),~I,p~cf,~~,p~c, and unknown variables 



456 KIICL~JI CHIDA and YOSHIRCI Ks~ro 

Table 2. Dimensionless groups 

Defined in 
the fluid 

Defined in 
the solid 

hl, 

i, 

Remarks 

ad 

Icolt 
forced convection 

natural convection 

natural convection 

forced convection with 
plane heat source 

unsteady problem 

t When characteristic length I, exists, x may be replaced by I,. 

FIG. 3. One-dimensional contact problem 

are &( = t, - tfo), Q,( = tf - tfO) and 0,( = t, - tJo). Then 
the following dimensionless functional relations are 
obtained applying the method described in Section 2: 

2 = F(B) (10) 

$= F(&, B> (11) 

(12) 

Analytical solutions for this problem are given as 

FIG. 4. Luikov-Perel’man problem 

(rearranging in terms of the physical properties par- 
ameter B) 

8, 1 

00 l+JB 
(13) 

These solutions are substantially equal to the results, 
equations (lOH12). 

Next the unsteady problem studied by Luikov and 
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Perel’man [9] is taken up. As shown in Fig. 4, at one 
wall of a two-dimensional channel (width I,, and initial 
temperature to) through which flows a completely 
developed flow with temperature tm, is placed a solid 
body of dimensions 1; I, whose entire surface except 
the surface contacting with the fluid is thermally insu- 
lated. Luikov and Perel’man treated this problem (the 
transient characteristics of the mean surface tempera- 
ture and the mean heat-transfer coefficient for length 
I,) introducing an effective value of velocity uo which 
considers ,not only the velocity boundary layer but 
also the thermal boundary layer of the flow. Defining 
the dimensionless groups 

\Uslx/ 1.x 

they obtained the following dimensionless functional 
relation for the mean heat-transfer coefficient: 

hm L 
/I = FK 4 5). (17) 

s 
The vectorial dimensional analysis method for con- 

jugate transfer phenomena gives the following dimen- 
sionless functional relation for the mean heat-transfer 
coefficient : 

ff,, = oqs, 4 X/d) (18) 
where 

Equation (18) can be rewritten into 

(19) 

and this is equal to the result given by Luikov and 
Perel’man. 

Next the unsteady problem studied by Adams and 
Gebhert [lo] is taken up. As shown in Fig. 5, a two- 
dimensional plate of dimensions I,. I,, on which surface 
there is a plane heat source with intensity qo, is placed 
in a two-dimensional uniform flow with velocity IQ, 
and temperature t,. Adams and Gebhart showed that 
the transient surface temperature 0,( = t, - t,), after 
putting the plane heat source into run step-wise at 
time r = 0, falls between the two solutions which are 
obtained by solving the solid side energy equation 
(including only heat capacity of the solid) under the 
assumption that the surface temperature is constant in 
one case, with the other the surface heat flux being kept 

tr 0 

I I 

FIG. 5. Adams-Gebhart problem. 

constant. They gave the following expression: 

$!!T= l_exp -C 
wm ( > Q 

where 

lx - MO 

By vectorial dimensional analysis for conjugate 
transfer phenomena, the following dimensionless func- 
tional relation for the surface temperature is obtained: 

Rfsw = 
W,Pf Cf 

4olzPsCs 
= Wfs, xf,,B,Prfh (21) 

When the parameter B is nearly zero as Adams and 
Gebhart treated, and the final surface temperature f& 
depends on qo, the 1.h.s. of equation (21) stands for 

0,/e,, , then equation (21) can be rewritten using 
dimensionless groups defined by Adams and Gebhart: 

+=F(G,Xf,,Prf). 
WCC 

Thus, equation (22) is substantially equal to the result 
given by Adams and Gebhart. 

(Plane heat source) 

FIG. 6. Gebhart problem. 

Next the unsteady problem studied by Gebhart 
[l-5] is taken up. As shown in Fig. 6, a two-dimensional 
plate of dimensions 1; 1, on which surface is a plane 
heat source of intensity qo, is placed vertically in fluid 
of temperature t,. Gebhart treated this problem con- 
cerning the transient characteristics of the mean surface 
temperature e,(r) after the heat source is put into run 
at time r = 0 and obtained the following result: 

where 

F = F(TG, QG, Prf) 
wm 

(23) 

(24) 

GG = sPr &lo 
1.p; J 

and b, M are both functions of Prf only. 
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Applying vectorial dimensional analysis for con- 
jugate transfer phenomena the following dimensionless 
functional relation is obtained for the mean surface 

temperature: 

The arrangement of this problem by Gebhart is in itself 
excellent and the definitions of the dimensionless time 
Tc and the dimensionless heat capacity of the plate Qc 
mean that the dimensionless intensity of the plane heat 

source serves as if it were the bridging multiplier. When 
one stands on the point of view that characteristic 
lengths and physical properties are additionally used to 
construct conjugate dimensionless groups, one is to 
select the dimensionless time and the dimensionless 
intensity of the plane heat source as the physical 

parameters. Actually, the following relations between 
the definitions by Gebhart and the conjugate dimen- 

sionless groups show that equations (23) and (25) are 

substantially equal: 

- Vd . (Qc)- 2 is determined by the parameter 

Q$s=pr;.GG. I,p,cs ’ 
i > LPfC/ 

- (Qd5. 
only. 

From above discussions on unsteady problems, it is 
easily seen that the effect of the combination of physical 
properties of both phases is represented only by the 

physical properties parameter B, and this is originated 
from taking account of heat conduction in the solid. 
However, B may not have so great an effect on the 
problems with heat sources as on those without. The 

problem studied by Gebhart is considered to be this 
case. 

However, in conjugate problems between a moving 

fluid (phase f) and a moving fluid (phase s) the para- 
meter B will not appear, and there will appear two 
parameters A,pf/,lsps and es/c, instead of B, because in 
the moving fluid the density and the specific heat work 

independently. 
Now steady problems are discussed in the followings. 

In steady problems the heat capacity in a unit volume 
of the solid phase psc, does not have any effect on the 
phenomena. Therefore, in steady p.roblems, the physical 
properties parameter Bdoes not appear and dimension- 
less groups take irregular forms, different from those 

tabulated in Table 2. 
First as a steady problem, the one studied by Lock 

and Gunn [6] is taken up. As shown in Fig. 7, a two- 
dimensional slender fin of root width 2.1, and length 
I, is placed downward in a fluid with temperature t,. 
Lock and Gunn treated this problem concerning the 
steady state temperature distribution at the fin surface 
when the fin root temperature is maintained at a 
constant temperature tR(eR = tR - t,) under the condi- 
tions that the fin slenderness ratio 1,/l, is sufficiently 
large and that the half width of the fin 6(x) at an 
arbitrary position x is given by 

FIG. 7. Lock-Gunn problem 

They concluded that the surface temperature expressed 

(or approximated) by the form 

0, xn -= - 
QR 0 1, 

In this problem, the predominant direction of the 

heat flux in the fluid qf is y-direction and the pre- 
dominant direction of the heat flux in the solid qs is 
supposed to be x-direction, then the vectorial dimen- 
sional analysis method for conjugate transfer phenom- 
ena gives the following dimensionless functional 

relation for the surface temperature: 

This result is substantially equal to the result given by 
Lock and Gunn. If this problem is regarded to be an 
unsteady one, the dimensionless functional relation for 

the surface temperature is given by 

&v 
8= F 

x l3fPfCf 
T,,, -1 -, O& Pr, 

R 1, l,‘i,p,c, 
(30) 

In this relation, note that the physical properties par- 
ameter B does not appear in spite of the unsteady prob- 
lem, since the predominant direction of qs is parallel to 
the x-coordinate. When one treats this problem as a 
steady one, two parameters will disappear, one being 
Tfs, and the other the third dimensionless group on the 
right-hand side of equation (30). By this time, the fourth 
dimensionless group which includes psc, takes the form 

and this may be regarded as an irregular form of 07,. 
Next the steady problem studied by Zinnes [l] is 

taken up. As shown in Fig. 8, a two-dimensional solid 
ofdimensions l;l, whose entire surface, but for the part 
of which contacting with a fluid of temperature t,, is 
thermally insulated, is placed on a two-dimensional 
vertical wall. On the upper and lower parts of the 



Thus, equation (38) may be regarded as another ir- 
regular form of 07, and equation (39) as an irregular 

FIG. 8. Zinnes problem. form of Q&. 

surface of the solid contacting with the fluid are placed 5. CONCLUDING REMARKS 

plane heat sources of intensity 40. Zinnes treated this By introducing the method of vectorial dimensional 
problem concerning steady state natural convection analysis which distinguishes the dimensions of length 
heat transfer after heat sources being put into run, and by phases, a perspective view of conjugate heat transfer 
obtained following relations for the surface temperature can be obtained. That is to say, to treat conjugate heat- 
and the temperature distribution in the fluid: transfer problems in a unified way it is necessary to use 

conjugate dimensionless groups, and in unsteady con- 
jugate heat-transfer problems between a fluid (or solid) 
and a solid there exists the physical properties para- 
meter B which expresses the effect of the combination 
of physical properties of the fluid (or solid) and of the 

where 

In this problem, the predominant direction of q/ is 
y-direction, on the other hand that of q. is expected to 
be much more complicated according to the running 
way ofplane heat sources and/or the region considered, 
so two cases, the case qJ/z and the case qJ/x, are 

elements, J. Hear Transfer 83,61-70 (1961). 
2. B. Gebhart, Transient natural convection from vertical 

elements-appreciable thermal capacity, J. Heat Trans- 
fer 85, lo-14 (1963). 

3. B. Gebhart and D. E. Adams, Measurements of transient 
natural convection on flat vertical surfaces, J. Heat 
Transfer 85,25-28 (1963). 

taken account of. Then the following results are ob- 4. B. Gebhart, On boundary conditions for natural con- 

tained for the surface temperature by vectorial dimen- vection transients, J. Heat Transfer 85, 184-185 (1963). 

sional analysis for conjugate transfer phenomena: 5. B. Gebhart, R. P. Dring and C. E. Polymeropoulos, 
Natural convection from vertical surfaces, the con- 
vection transient regime, J. Heat Transfer 89, 53-59 

._ (1967). 

for the case qJ/z, and 

for the case q,JJx. 
10. D. E. Adams and B. Gebhart, Transient forced con- 

vection from a flat plate subjected to a step energy input, 

Comparison of equations (35) or (36) with equation 
J. Heat Transfer 86,253-258 (1964). 

(32)given byzinnesindicates that they are substantially 
11. A. E. Zinnes, The coupling of conduction with laminar 

natural convection from a vertical flat plate with 
equal and furthermore that the result by Zinnes be- arbitrary surface heating, J. Heat Transfer 92, 528-535 

comes more compact expression by using dimension- (1970). 
APPENDIX 

less groups which appear in equations (35) or (36). This 
means that the parameter A//AS does not work in- 

The derivation procedure of equation (3), which is picked 

dependently. If this problem is regarded as an unsteady 
up as a representative from among equations (1). (3). (4) and 
(5), is described in this Appendix. 
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face temperature is given by (for simplicity only the 
case q,//z is considered) 

Prf > . (37) 

Therefore, in the steady problem, T,, and B will dis- 
appear, the latter affecting the forms of other dimen- 
sionless groups containing the term pSc,, as follows 

(@y,)l. (@4 = (38) 

5 .!$ . (39) 

solid on heat transfer. 
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one, the dimensionless functional relation for the sur- Physical quantities which affect the temperature distri- 
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bution in the fluid 0, are T. s, J‘, ~1,. i,. p,, cI, i,, pscs, lz. as independent. Then Buckingham’s Pi theorem gives the 
u,, and 00. First, the predominant directions of the heat flux following functional relation: 
in phasef(q,) and of that in phase s(y,) in the problem must 
be estimated. Then the dimensions of i/ and i, can be 

nIi = F(nz, n3. n4. x5, 7r6) 

determined by Fourier’s law of heat conduction. In this where 

example, q, and q, are estimated to be parallel to y and z 
respectively, so [ir] = [qs]/[POr/?y] = HL,,‘L&,OT and 0, TJ,P,C, XifP,Cf n, = -- x3 = ___ 
[A,] = [q,]/[EB,/Sz] = HLz~L,LbOT. After the determina- 00 n2=IfoZ3 4:(p,c# ’ 
tion of dimensions of all physical quantities concerned 
(see Table l), independent physical quantities must be 

YPSCI ASP& PJCf 

appropriately chosen. Since independent fundamental di- 
=4=Irpsc,3 

i75 = __ 

i/pfcf 
, 7clj=7. 

‘“1 

mensions for this example are L,, L,. L:. M!L+. H/Lb, 0 For convenience, the form /I,p,cf/i,p,c, is used instead of 
and ‘J’, six physical quantities CO,, T. X. x. A,, pr) are chosen r-t5 in this paper. 

ETUDE PAR L’ANALYSE DIMENSIONNELLE VECTORIELLE 
DU TRANSFERT DE CHALEUR CONJUGUE 

R&urn&Le transfert de chaleur dans un systeme comprenant deux phases est ttudie du point de vue 
assez general de I’analyse dimensionnelle vectorielle, en distinguant les dimensions de longueur suivant 
les phases aussi bien que suivant les directions spatiales. 

Comme resultat, on a tire les conclusions suivantes: (1) Afin de saisir le phenomene du transfert de 
chaleur conjugub dans un melange de phases, de man&e unit%%, il est necessaire de definir de nouveaux 
groupements adimensionnels qui comprennent en outre les groupements adimensionnels habituels d&finis 
dans chacune des phases; (2) Dans le cas du transfert de chaleur instationnaire, il existe un nouveau 

groupement adimensionnel qui reprbente I’effet combint des proprittts physiques de chaque phase. 

UNTERSUCHUNG DES ZUSAMMENGESETZTEN WARMEUBERGANGS DURCH 
VEKTORIELLE DIMENSIONSANALYSE 

Zusammenfassung-Der Warmetibergang in einem System mit zwei zusammengesetzten Phasen wird von 
einem allgemeineren Gesichtspunkt aus untersucht mit Hilfe der vektoriellen Dimensionsanalyse, wobei 
nach Dimensionen der Lange wie such des Raumes unterschieden wird. 

Das Ergebnis sind folgende SchluBfolgerungen: (1) Urn den zusammengesetzten Warmetibergang in 
einheitlicher Weise zu erfassen ist es notwendig, neue dimensionslose Gruppen zu definieren, die 
konventionelle dimensionslose Gruppen fur beide Phasen umfassen; (2) Bei instationlrem zusammen- 
gesetztem Warmedbergang ergibt sich eine neue dimension&se Gruppe, die den EinfluD der Kombination 

der physikalischen Stoffwerte beider Phasen wiedergibt. 

MCCJIE~OBAHME COI-IPJIXEHHOf-0 TlPOUECCA TIEPEHOCA TEllJIA 
C TIOMOfBbfG BEKTOPHOFO AHAJlM3A PA3MEPHOCTEfi 

Am~o~aunn - 06cyxnaexn nepeHOC Tenna 6 CHCTeMe H3 nByX COnpTGKeHHblX $a3 C HeCKOnbKO 
o6meR TOYKA 3peHcln C nOMOmbm BeKTOpHOrO aHaJtH3a pa3MepHOCTefi, B KOTOpOM yYHTblBaloTCR 
pa3JlWlHble MaCmTa6bI ,Q,,AHbi KBK n0 @3aM, TaK H n0 HNlpaBJteHWTM B npOCTpaHCTBe. 

B pe3ynbTaTe cAenaHb1 cnenymuwe BblBonbl: (I) Ann yHw&iuwpoeanHoro onncarinfl nnouecca 
nepettoca renna HeO6XOnnMO 0npenennTb HoBbte 6espa3MepHble KOMIlJleKCbl, KOTOpbIe BKnwiawT 
06blYHble 6e3pa3MepHble KOMnfleKCbl, OnneneJlneMble B 06eWX @asaX; (2) npH HeCTaWiOHapHOM 
COnpnwreHHOM nepeHOCe TenJla CymeCTByeT HOBblk 6e3pa3MepHblti KOMnJleKC, KOTOpblir XapaKTepH- 

3yeT BntlRHMe COYeTaHHII @iSHYeCKMX XapaKTepHCTHK o6enx @as. 


